Asymptotic Behavior of Mayer Cluster Sums for the One-Dimensional Ising Model

G. S. Joyce ${ }^{1}$

Received July 14, 1982

The properties of the high-field polynomials $L_{n}(u)$ for the one-dimensional spin $\frac{1}{2}$ Ising model are investigated. [The polynomials $L_{n}(u)$ are essentially lattice gas analogues of the Mayer cluster integrals $b_{n}(T)$ for a continuum gas.] It is shown that $u^{-1} L_{n}(u)$ can be expressed in terms of a shifted Jacobi polynomial of degree $n-1$. From this result it follows that $\left\{u^{-1} L_{n}(u) ; n=1,2, \ldots\right\}$ is a set of orthogonal polynomials in the interval $(0,1)$ with a weight function $\omega(u)=u$, and $u^{-1} L_{n}(u)$ has $n-1$ simple zeros $\left\{u_{n}(v) ; v=1,2, \ldots, n-1\right\}$ which all lie in the interval $0<u<1$. Next the detailed behavior of $L_{n}(u)$ as $n \rightarrow \infty$ is studied. In particular, various asymptotic expansions for $L_{n}(u)$ are derived which are uniformly valid in the intervals $u<0,0<u<1$, and $u>1$. These expansions are then used to analyze the asymptotic properties of the zeros $\left\{u_{n}(v) ; v=1,2, \ldots, n-1\right\}$. It is found that

$$
\begin{aligned}
u_{n}(v) \sim & \frac{1}{4}\left(j_{1, v} / n\right)^{2}\left[1-\left(j_{1, v}^{2} / 12\right) n^{-2}+\left(j_{1, v}^{2} / 720\right)\left(-3+2 j_{1, v}^{2}\right) n^{-4}\right. \\
& \left.+\left(j_{1, v}^{2} / 20160\right)\left(40+4 j_{1, v}^{2}-j_{\mathrm{t}, v}^{4}\right) n^{-6}+\cdots\right] \\
u_{n}(n-v) \sim & 1-\left(j_{0, v}^{2} / 4\right) n^{-2}+\left(j_{0, v}^{2} / 48\right)\left(-2+j_{0, v}^{2}\right) n^{-4} \\
& +\left(j_{0, v}^{2} / 2880\right)\left(2+9 j_{0, v}^{2}-2 j_{0, v}^{4}\right) n^{-6}+\cdots
\end{aligned}
$$

as $n \rightarrow \infty$ with v fixed, where $j_{k, v}$ denotes the v th zero of the Bessel function $J_{k}(z)$.

KEY WORDS: One-dimensional Ising model; high-field polynomials; Mayer cluster sums; asymptotic analysis; zeros.

1. INTRODUCTION

The spin $\frac{1}{2}$ Ising model of a ferromagnet on a d-dimensional lattice Ω_{d} with N-sites has the Hamiltonian

$$
\begin{equation*}
\mathscr{H}=-J \sum_{(i j)} \sigma_{i} \sigma_{j}-m_{0} B \sum_{i=1}^{N} \sigma_{i} \tag{1.1}
\end{equation*}
$$

[^0]where the first summation is taken over all nearest neighbor pairs (ij) in the lattice Ω_{d}, B is the magnetic field, $\sigma_{i}= \pm 1$, and J, m_{0} are positive constants. (A comprehensive review of the Ising model has been given by Domb. ${ }^{(1)}$) In the thermodynamic limit $N \rightarrow \infty$ the free energy per spin $g(T, B)$ for the system is given by
\[

$$
\begin{equation*}
-g(T, B) / k_{\mathrm{B}} T=\lim _{N \rightarrow \infty} \frac{1}{N} \ln Z_{N}(T, B) \tag{1.2}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
Z_{N}(T, B)=\sum_{\sigma_{1}= \pm 1} \cdots \sum_{\sigma_{N}= \pm 1} \exp \left(-\mathscr{H} / k_{\mathbf{B}} T\right) \tag{1.3}
\end{equation*}
$$

is the partition function.
A standard procedure for investigating the thermodynamic properties of the Ising model is to expand $g(T, B)$ as the high-field series ${ }^{(2)}$

$$
\begin{equation*}
-g(T, B) / k_{\mathrm{B}} T=-\frac{q}{8} \ln u-\frac{1}{2} \ln \mu+\sum_{n=1}^{\infty} L_{n}(u) \mu^{n} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{align*}
u & =\exp \left(-4 J / k_{\mathrm{B}} T\right) \tag{1.5}\\
\mu & =\exp \left(-2 m_{0} B / k_{\mathrm{B}} T\right) \tag{1.6}
\end{align*}
$$

and q is the coordination number of the lattice Ω_{d}. The coefficient $L_{n}(u)$ is a polynomial of degree $n q / 2$ in the variable u except when n and q are both odd. [For this special case $L_{n}(u)$ is a polynomial of degree $n q$ in the variable $u^{1 / 2}$.] It can also be shown that $L_{n}(u)$ can always be written in the form

$$
\begin{equation*}
L_{n}(u)=u^{q n / 2} Q_{n}(1 / u) \tag{1.7}
\end{equation*}
$$

where $Q_{n}(1 / u)$ is a polynomial in the variable $1 / u$. If we interpret the Ising model as a model of a lattice gas, ${ }^{(3)}$ we find that the polynomial $Q_{n}(1 / u)$ is a lattice analogue of the Mayer cluster integral $b_{n}(T)$ which occurs in the activity expansion for the pressure of an imperfect gas. Sykes et al. ${ }^{(4-8)}$ have used sophisticated graph-theoretic methods to derive explicit expressions for a considerable number of the initial coefficients $L_{n}(u)$ for a variety of two- and three-dimensional lattices.

The expansion (1.4) is of particular interest in the theory of phase transitions because the asymptotic behavior of $L_{n}(u)$ as $n \rightarrow \infty$, with u fixed and T less than the critical temperature T_{c}, essentially determines the
behavior of the free energy $g(T, B)$ in the neighborhood of the phase boundary $\mu=1$. Although no exact asymptotic analysis of $L_{n}(u)$ has yet been carried out, a number of interesting approximate theories have been developed. Essam and Fisher ${ }^{(9)}$ and Fisher ${ }^{(10,11)}$ have used heuristic arguments based on the droplet model of condensation to derive the following asymptotic representation for $L_{n}(u)$:

$$
\begin{equation*}
L_{n}(u) \sim A n^{-s \tau}\left(\lambda u^{1 / 2}\right)^{D n^{s}} \tag{1.8}
\end{equation*}
$$

as $n \rightarrow \infty$, where A, D, λ, τ, and s are constants with $0<s<1$. This asymptotic formula is inconsistent with the classical theory of condensation and the numerical work of Gaunt and Baker ${ }^{(12)}$ on the metastable state of the Ising model because it gives rise to an essential singularity in the free energy on the phase boundary $B=0, T<T_{c}{ }^{(10,11,13)}$ Following the work of Fisher, there have been several empirical attempts to modify the droplet model formulation and to extend its range of validity. ${ }^{(14-16)}$ Attempts have also been made by Domb and Guttmann ${ }^{(17)}$ and Domb ${ }^{(18,19)}$ to reconcile the classical theory of condensation with the conflicting predictions of the droplet model by developing a more systematic diagrammatic approach to the problem.

The main aim in this paper is to determine the detailed asymptotic behavior of $L_{n}(u)$ as $n \rightarrow \infty$ for the one-dimensional spin- $\frac{1}{2}$ Ising model. In particular, various uniform asymptotic expansions for $L_{n}(u)$ are derived by using the general methods developed by Darboux ${ }^{(20)}$ and Olver. ${ }^{(21,22)}$ These expansions are then used to investigate the asymptotic properties of the zeros of $L_{n}(u)$ as $n \rightarrow \infty$. It is hoped that the exact results obtained will provide some insight into the asymptotic behavior of $L_{n}(u)$ for the twoand three-dimensional Ising models.

2. PROPERTIES OF $L_{n}(u)$ IN ONE DIMENSION

It is readily seen from (1.4) that, in general, the magnetization per spin of the Ising model

$$
\begin{equation*}
m=-(\partial g / \partial B)_{T} \tag{2.1}
\end{equation*}
$$

has a high-field series representation

$$
\begin{equation*}
m / m_{0}=1-2 \sum_{n=1}^{\infty} n L_{n}(u) \mu^{n} \tag{2.2}
\end{equation*}
$$

For the particular case of the one-dimensional Ising model we also have the closed-form expression ${ }^{(2)}$

$$
\begin{equation*}
m / m_{0}=(1-\mu)\left[1-2(1-2 u) \mu+\mu^{2}\right]^{-1 / 2} \tag{2.3}
\end{equation*}
$$

If the standard generating function

$$
\begin{equation*}
\left(1-2 x \mu+\mu^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}(x) \mu^{n} \tag{2.4}
\end{equation*}
$$

is applied to (2.3) and the resulting expansion is compared with (2.2), we obtain the formula

$$
\begin{equation*}
L_{n}(u)=\frac{1}{2 n}\left[P_{n-1}(1-2 u)-P_{n}(1-2 u)\right] \quad(n \geqslant 1) \tag{2.5}
\end{equation*}
$$

where $P_{n}(x)$ is the Legendre polynomial of degree n. This result has also been given by Bessis et al. ${ }^{(23)}$

A simplification of (2.5) can be achieved by using the relation ${ }^{(24)}$

$$
\begin{equation*}
\left[n+\frac{1}{2}(\alpha+\beta)\right](1-x) P_{n-1}^{(\alpha+1, \beta)}(x)=(n+\alpha) P_{n-1}^{(\alpha, \beta)}(x)-n P_{n}^{(\alpha, \beta)}(x) \tag{2.6}
\end{equation*}
$$

with $\alpha=\beta=0$, and the identity

$$
\begin{equation*}
P_{n}^{(0,0)}(x) \equiv P_{n}(x) \tag{2.7}
\end{equation*}
$$

where $P_{n}^{(x, \beta)}(x)$ denotes the Jacobi polynomial of degree n. In this manner we find that

$$
\begin{equation*}
L_{n}(u)=\frac{u}{n} P_{n-1}^{(1,0)}(1-2 u) \tag{2.8}
\end{equation*}
$$

We can write (2.8) in the alternative form

$$
\begin{equation*}
L_{n}(u)=\frac{u}{n}(-1)^{n} R_{n-1}^{(0,1)}(u) \tag{2.9}
\end{equation*}
$$

where $R_{n}^{(\alpha, \beta)}(u)$ denotes the shifted Jacobi polynomial of degree $n .^{(25)}$ In the notation of Magnus and Oberhettinger, ${ }^{(26)}$ we also have

$$
\begin{equation*}
L_{n}(u)=u \mathscr{F}_{n-1}(2,2, u) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{F}_{n}(\alpha, \gamma, u)={ }_{2} F_{1}(-n, n+\alpha ; \gamma ; u) \tag{2.11}
\end{equation*}
$$

and ${ }_{2} F_{1}$ is the hypergeometric function.
We can now use the standard theory of Jacobi polynomials ${ }^{(24,25,27)}$ to obtain the Rodrigues' formula

$$
\begin{equation*}
L_{n}(u)=\frac{1}{n!} D^{n-1}\left[u^{n}(1-u)^{n-1}\right] \tag{2.12}
\end{equation*}
$$

and the three-term recurrence relation

$$
\begin{align*}
& (2 n-1)(n+1)^{2} L_{n+1}(u)-2 n\left[2 n^{2}-\left(4 n^{2}-1\right) u\right] L_{n}(u) \\
& \quad+(2 n+1)(n-1)^{2} L_{n-1}(u)=0 \tag{2.13}
\end{align*}
$$

where $D \equiv d / d u$ and $n=1,2,3, \ldots$. From the orthogonality property

$$
\begin{equation*}
\int_{0}^{1} R_{n}^{(0,1)}(u) R_{m}^{(0,1)}(u) u d u=\frac{1}{2}(n+1)^{-1} \delta_{m n} \tag{2.14}
\end{equation*}
$$

we see that $\left\{u^{-1} L_{n}(u) ; n=1,2,3, \ldots\right\}$ is a set of orthogonal polynomials in the interval $(0,1)$ with a weight function $\omega(u)=u$. It is also evident that all the ($n-1$) zeros of the polynomial $u^{-1} L_{n}(u)$ are simple, and located in the interval $0<u<1$. More generally, the numerical work of Gaunt ${ }^{(28)}$ indicates that the coefficient $L_{n}(u)$ for the two- and three-dimensional spin $\frac{1}{2}$ Ising models always has ($n-1$) simple zeros in the interval $u_{c}<u<1$, where u_{c} is the critical value of u. (Note that for the Ising model in one dimension $u_{c} \equiv 0$.)

3. DARBOUX ANALYSIS OF $L_{n}(u)$ IN ONE DIMENSION

In this section the method of Darboux ${ }^{(20)}$ will be used to determine the asymptotic behavior of $L_{n}(u)$ as $n \rightarrow \infty$ with u fixed and negative. Similar results will also be given for the case $u>1$. We begin by writing the generating function (2.4) with $x=1-2 u$ in the alternative form

$$
\begin{equation*}
\left[\left(\mu-e^{y_{0}}\right)\left(\mu-e^{-\vartheta_{0}}\right)\right]^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}\left(\cosh \vartheta_{0}\right) \mu^{n} \tag{3.1}
\end{equation*}
$$

where the parameter $\vartheta_{0}=\vartheta_{0}(u)$ is defined by

$$
\begin{equation*}
\vartheta_{0}=\operatorname{arccosh}(1-2 u) \tag{3.2}
\end{equation*}
$$

with $u<0$ and $\vartheta_{0}>0$. Next we carry out the change of variable

$$
\begin{equation*}
\mu=e^{-s_{0}}(1-h) \tag{3.3}
\end{equation*}
$$

and expand the left-hand side of (3.1) in powers of h about the dominant branch-point singularity at $\mu=e^{-s_{0}}$. This procedure yields

$$
\begin{align*}
& \left(\frac{1}{2} e^{\gamma_{0}} \operatorname{csch} \vartheta_{0}\right)^{1 / 2} \sum_{m=0}^{\infty}\binom{-1 / 2}{m}\left(\frac{1}{2} e^{-y_{0}} \operatorname{csch} \vartheta_{0}\right)^{m}\left(1-\mu e^{\gamma_{0}}\right)^{m-\frac{1}{2}} \\
& =\sum_{n=0}^{\infty} P_{n}\left(\cosh \vartheta_{0}\right) \mu^{n} \tag{3.4}
\end{align*}
$$

where $\binom{-1 / 2}{m}$ is a binomial coefficient. If we now formally expand the lefthand side of (3.4) in powers of μ and equate the coefficients of μ^{n} we obtain the asymptotic formula

$$
\begin{align*}
P_{n}\left(\cosh \vartheta_{0}\right) \sim & (-1)^{n} e^{n \vartheta_{0}}\left(\frac{1}{2} e^{\vartheta_{0}} \operatorname{csch} \vartheta_{0}\right)^{1 / 2} \\
& \times \sum_{m=0}^{\infty}\binom{-1 / 2}{m}\binom{m-\frac{1}{2}}{n}\left(\frac{1}{2} e^{-\vartheta_{0}} \operatorname{csch} \vartheta_{0}\right)^{m} \tag{3.5}
\end{align*}
$$

as $n \rightarrow \infty$, with fixed $u<0$.
It is possible to express the expansion (3.5) in terms of the ${ }_{2} F_{1}$ hypergeometric series by writing the two binomial coefficients in terms of gamma functions. The final result is

$$
\begin{align*}
P_{n}\left(\cosh \vartheta_{0}\right) \sim & e^{n \vartheta_{0}}\left(\frac{1}{2} e^{\vartheta_{0}} \operatorname{csch} \vartheta_{0}\right)^{1 / 2}\left[\left(\frac{1}{2}\right)_{n} / n!\right] \\
& \times{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; \frac{1}{2}-n ;-\frac{1}{2} e^{-\vartheta_{0}} \operatorname{csch} \vartheta_{0}\right) \tag{3.6}
\end{align*}
$$

as $n \rightarrow \infty$, with fixed $u<0$, where

$$
\begin{equation*}
\left(\frac{1}{2}\right)_{n}=\Gamma\left(n+\frac{1}{2}\right) / \Gamma\left(\frac{1}{2}\right) \tag{3.7}
\end{equation*}
$$

From the formula (3.6) we can readily derive the basic asymptotic expansion

$$
\begin{equation*}
P_{n}\left(\cosh \vartheta_{0}\right) \sim\left(2 \pi n \sinh \vartheta_{0}\right)^{-1 / 2} e^{\left(n+\frac{1}{2}\right)^{\gamma_{0}}} \sum_{m=0}^{\infty} a_{m}\left(\vartheta_{0}\right)(8 n)^{-m} \tag{3.8}
\end{equation*}
$$

as $n \rightarrow \infty$, with fixed $u<0$, where

$$
\begin{align*}
a_{0}\left(\vartheta_{0}\right)= & 1 \tag{3.9}\\
a_{1}\left(\vartheta_{0}\right)= & -\left(2-\operatorname{coth} \vartheta_{0}\right) \tag{3.10}\\
a_{2}\left(\vartheta_{0}\right)= & \frac{1}{2}\left(4-12 \operatorname{coth} \vartheta_{0}+9 \operatorname{coth}^{2} \vartheta_{0}\right) \tag{3.11}\\
a_{3}\left(\vartheta_{0}\right)= & \frac{5}{2}\left(8-4 \operatorname{coth} \vartheta_{0}-18 \operatorname{coth}^{2} \vartheta_{0}+15 \operatorname{coth}^{3} \vartheta_{0}\right) \tag{3.12}\\
a_{4}\left(\vartheta_{0}\right)= & -\frac{21}{8}\left(16-160 \operatorname{coth} \vartheta_{0}+120 \operatorname{coth}^{2} \vartheta_{0}\right. \\
& \left.+200 \operatorname{coth}^{3} \vartheta_{0}-175 \operatorname{coth}^{4} \vartheta_{0}\right) \tag{3.13}
\end{align*}
$$

If we make the replacement $n \rightarrow n-1$ in (3.8), we obtain the similar expansion

$$
\begin{equation*}
P_{n-1}\left(\cosh \vartheta_{0}\right) \sim\left(2 \pi n \sinh \vartheta_{0}\right)^{-1 / 2} e^{\left(n-\frac{1}{2}\right)^{\vartheta_{0}}} \sum_{m=0}^{\infty} d_{m}\left(\vartheta_{0}\right)(8 n)^{-m} \tag{3.14}
\end{equation*}
$$

as $n \rightarrow \infty$, with fixed $u<0$, where

$$
\begin{align*}
d_{0}\left(\vartheta_{0}\right) & =1 \tag{3.15}\\
d_{1}\left(\vartheta_{0}\right) & =\left(2+\operatorname{coth} \vartheta_{0}\right) \tag{3.16}\\
d_{2}\left(\vartheta_{0}\right) & =\frac{1}{2}\left(4+12 \operatorname{coth} \vartheta_{0}+9 \operatorname{coth}^{2} \vartheta_{0}\right) \tag{3.17}\\
d_{3}\left(\vartheta_{0}\right) & =-\frac{5}{2}\left(8+4 \operatorname{coth} \vartheta_{0}-18 \operatorname{coth}^{2} \vartheta_{0}-15 \operatorname{coth}^{3} \vartheta_{0}\right) \tag{3.18}\\
d_{4}\left(\vartheta_{0}\right) & =-\frac{21}{8}\left(16+160 \operatorname{coth} \vartheta_{0}+120 \operatorname{coth}^{2} \vartheta_{0}\right. \\
& \left.-200 \operatorname{coth}^{3} \vartheta_{0}-175 \operatorname{coth}^{4} \vartheta_{0}\right) \tag{3.19}
\end{align*}
$$

We now substitute the expansions (3.8) and (3.14) in the formula (2.5). This procedure yields the important result
$L_{n}(u) \sim-\frac{1}{2} \pi^{-1 / 2} n^{-3 / 2}\left[\tanh \left(\vartheta_{0} / 2\right)\right]^{1 / 2} e^{n \vartheta_{0}} \sum_{m=0}^{\infty} f_{m}\left(\vartheta_{0}\right)\left(8 n \sinh \vartheta_{0}\right)^{-m}$
as $n \rightarrow \infty$, with fixed $u<0$, where

$$
\begin{align*}
& f_{0}\left(\vartheta_{0}\right)=1 \tag{3.21}\\
& f_{1}\left(\vartheta_{0}\right)=-\left(2+\cosh \vartheta_{0}\right) \tag{3.22}\\
& f_{2}\left(\vartheta_{0}\right)=-\frac{1}{2}\left(4+12 \cosh \vartheta_{0}-\cosh ^{2} \vartheta_{0}\right) \tag{3.23}\\
& f_{3}\left(\vartheta_{0}\right)=-\frac{5}{2}\left(8+4 \cosh \vartheta_{0}+10 \cosh ^{2} \vartheta_{0}-\cosh ^{3} \vartheta_{0}\right) \tag{3.24}\\
& f_{4}\left(\vartheta_{0}\right)=-\frac{21}{8}\left(16+160 \cosh \vartheta_{0}+8 \cosh ^{2} \vartheta_{0}+40 \cosh ^{3} \vartheta_{0}\right. \\
&\left.+\cosh ^{4} \vartheta_{0}\right) \tag{3.25}
\end{align*}
$$

Finally, we investigate the behavior of $L_{n}(u)$ as $n \rightarrow \infty$ with fixed $u>1$. For this case we write (2.5) in the alternative form

$$
\begin{equation*}
L_{n}(u)=\frac{(-1)^{n-1}}{2 n}\left[P_{n-1}\left(\cosh \vartheta_{1}\right)+P_{n}\left(\cosh \vartheta_{1}\right)\right] \tag{3.26}
\end{equation*}
$$

where

$$
\begin{equation*}
\vartheta_{1}=\operatorname{arccosh}(2 u-1) \tag{3.27}
\end{equation*}
$$

with $u>1$ and $\vartheta_{1}>0$, and then apply the expansions (3.8) and (3.14). In this manner we find that

$$
\begin{align*}
L_{n}(u) \sim & \frac{1}{2}(-1)^{n-1} \pi^{-1 / 2} n^{-3 / 2}\left[\operatorname{coth}\left(\vartheta_{1} / 2\right)\right]^{1 / 2} e^{n \vartheta_{1}} \\
& \times \sum_{m=0}^{\infty} g_{m}\left(\vartheta_{1}\right)\left(8 n \sinh \vartheta_{1}\right)^{-m} \tag{3.28}
\end{align*}
$$

as $n \rightarrow \infty$, with fixed $u>1$, where

$$
\begin{align*}
g_{0}\left(\vartheta_{1}\right) & =1 \tag{3.29}\\
g_{1}\left(\vartheta_{1}\right) & =\left(2-\cosh \vartheta_{1}\right) \tag{3.30}\\
g_{2}\left(\vartheta_{1}\right) & =-\frac{1}{2}\left(4-12 \cosh \vartheta_{1}-\cosh ^{2} \vartheta_{1}\right) \tag{3.31}\\
g_{3}\left(\vartheta_{1}\right) & =\frac{5}{2}\left(8-4 \cosh \vartheta_{1}+10 \cosh ^{2} \vartheta_{1}+\cosh ^{3} \vartheta_{1}\right) \tag{3.32}\\
g_{4}\left(\vartheta_{1}\right) & =-\frac{21}{8}\left(16-160 \cosh \vartheta_{1}+8 \cosh ^{2} \vartheta_{1}-40 \cosh ^{3} \vartheta_{1}\right. \\
& \left.+\cosh ^{4} \vartheta_{1}\right) \tag{3.33}
\end{align*}
$$

The basic asymptotic expansions (3.20) and (3.28) are only applicable in the nonphysical intervals $u<0$ and $u>1$, respectively. Furthermore, these expansions clearly break down when n is large and $n \vartheta_{i}$ is small, where $i=0,1$. However, we shall find in the following sections that they play a crucial role in the derivation of uniform asymptotic expansions for $L_{n}(u)$ which have a wider range of validity.

4. UNIFORM ASYMPTOTIC EXPANSIONS FOR $L_{n}(u)$

In this section we shall use the methods of Olver ${ }^{(21,22)}$ to derive an asymptotic expansion for $L_{n}(u)$ which is uniform with respect to the variable u when u lies in the interval $u<0$. A similar result which is valid in the interval $u>1$ will also be given.

We begin by considering the standard differential equation ${ }^{(24)}$

$$
\begin{equation*}
\left(1-x^{2}\right) D^{2} P_{n}^{(1,0)}(x)-(1+3 x) D P_{n}^{(1,0)}(x)+n(n+2) P_{n}^{(1,0)}(x)=0 \tag{4.1}
\end{equation*}
$$

where $D \equiv d / d x$. If we reduce (4.1) to its normal form, ${ }^{(29)}$ we find that

$$
\begin{equation*}
y(x)=(1-x)(1+x)^{1 / 2} P_{n}^{(1,0)}(x) \tag{4.2}
\end{equation*}
$$

satisfies the simplified differential equation

$$
\begin{equation*}
D^{2} y+\left[(n+1)^{2}\left(1-x^{2}\right)^{-1}+\frac{1}{4}(1+x)^{-2}\right] y=0 \tag{4.3}
\end{equation*}
$$

From this result and the formula (2.8) we readily see that

$$
\begin{equation*}
w(u)=(1-u)^{1 / 2} L_{n}(u) \tag{4.4}
\end{equation*}
$$

is a solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} w}{d u^{2}}+\left[n^{2} u^{-1}(1-u)^{-1}+\frac{1}{4}(1-u)^{-2}\right] w=0 \tag{4.5}
\end{equation*}
$$

It is interesting to note that (4.5) has transition points ${ }^{(21)}$ at $u=0$ and 1 .

Next we change the variables (u, w) in (4.5) by using the transformations

$$
\begin{align*}
u & =\frac{1}{2}\left(1-\cosh \vartheta_{0}\right) \tag{4.6}\\
w & =\left[\left(\sinh \vartheta_{0}\right) / \vartheta_{0}\right]^{1 / 2} W \tag{4.7}
\end{align*}
$$

This procedure yields the further differential equation

$$
\begin{equation*}
\frac{d^{2} W}{d \vartheta_{0}^{2}}=\frac{1}{\vartheta_{0}} \frac{d W}{d \vartheta_{0}}+\left[n^{2}+\bar{f}\left(\vartheta_{0}\right)\right] W \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{f}\left(\vartheta_{0}\right)=\frac{1}{4}\left[-\left(3 / \vartheta_{0}^{2}\right)+\operatorname{csch}^{2} \vartheta_{0}\left(1+2 \cosh \vartheta_{0}\right)\right] \tag{4.9}
\end{equation*}
$$

and $\vartheta_{0}>0$. The function $\bar{f}\left(\vartheta_{0}\right)$ is analytic at $\vartheta_{0}=0$ provided that we define $\bar{f}(0) \equiv 0$. We now apply to (4.8) a theorem proved by Olver. ${ }^{(22)}$ In this manner we obtain the uniform asymptotic expansion

$$
\begin{align*}
L_{n}(u) \sim & C_{n}\left[\left(\vartheta_{0} / 2\right) \tanh \left(\vartheta_{0} / 2\right)\right]^{1 / 2}\left[I_{1}\left(n \vartheta_{0}\right) \sum_{s=0}^{\infty} D_{2 s}^{(0)}\left(\vartheta_{0}\right)(8 n)^{-2 s}\right. \\
& \left.+I_{2}\left(n \vartheta_{0}\right) \sum_{s=0}^{\infty} D_{2 s+1}^{(0)}\left(\vartheta_{0}\right)(8 n)^{-2 s-1}\right] \tag{4.10}
\end{align*}
$$

as $n \rightarrow \infty$ with $\vartheta_{0}>0$ and $u<0$, where $I_{v}(z)$ denotes a modified Bessel function of order v, C_{n} only depends on the integer n, and the coefficient $D_{0}^{(0)}\left(\vartheta_{0}\right) \equiv 1$. The result (4.10) is much more powerful than the Darboux expansion (3.20) and gives an accurate approximation for $L_{n}(u)$ when n is large and $n \vartheta_{0}$ has any value in the interval $(0, \infty)$.

Olver ${ }^{(22)}$ has shown that the coefficients $D_{m}^{(0)}\left(\vartheta_{0}\right)(m=1,2, \ldots)$ in (4.10) can be generated, at least in principle, by using two coupled integral recurrence relations with the initial condition $D_{0}^{(0)}\left(\vartheta_{0}\right) \equiv 1$. For the simplest case, we find

$$
\begin{equation*}
D_{1}^{(0)}\left(\vartheta_{0}\right)=4 \int_{0}^{y_{0}} \bar{f}(t) d t \tag{4.11}
\end{equation*}
$$

where the function \bar{f} is defined in (4.9). The evaluation of this integral gives the formula

$$
\begin{equation*}
D_{1}^{(0)}\left(\vartheta_{0}\right)=\vartheta_{0}^{1}\left[3-\left(\vartheta_{0} / \sinh \vartheta_{0}\right)\left(2+\cosh \vartheta_{0}\right)\right] \tag{4.12}
\end{equation*}
$$

It is not feasible to carry out this procedure for the higher-order coefficients because of the large amount of algebra which is involved.

Fortunately, it is also possible to determine the coefficients $D_{m}^{(0)}\left(\vartheta_{0}\right)$ ($m=1,2, \ldots$) by replacing the Bessel functions in (4.10) with the asymptotic representation ${ }^{(27)}$

$$
\begin{equation*}
I_{v}(z) \sim(2 \pi z)^{-1 / 2} e^{z} \sum_{m=0}^{\infty}(-1)^{m}(v, m)(2 z)^{-m} \tag{4.13}
\end{equation*}
$$

as $z \rightarrow \infty$, where

$$
\begin{equation*}
(v, m)=\left(2^{2 m} m!\right)^{-1} \prod_{k=1}^{m}\left[4 v^{2}-(2 k-1)^{2}\right] \quad(m \geqslant 1) \tag{4.14}
\end{equation*}
$$

with $(v, 0) \equiv 1$. A comparison of the resulting expansion with the equivalent Darboux expansion (3.20) enables one to obtain the required formulas for $D_{m}^{(0)}\left(\vartheta_{0}\right)(m=1,2, \ldots)$. The final results are

$$
\begin{align*}
D_{0}^{(0)}\left(\vartheta_{0}\right)= & 1 \tag{4.15}\\
D_{1}^{(0)}\left(\vartheta_{0}\right)= & \vartheta_{0}^{-1}\left[3+\Delta_{0} f_{1}\left(\vartheta_{0}\right)\right] \tag{4.16}\\
D_{2}^{(0)}\left(\vartheta_{0}\right)= & \left(2 \vartheta_{0}^{2}\right)^{-1}\left[105+30 \Delta_{0} f_{1}\left(\vartheta_{0}\right)+2 A_{0}^{2} f_{2}\left(\vartheta_{0}\right)\right] \tag{4.17}\\
D_{3}^{(0)}\left(\vartheta_{0}\right)= & \left(2 \vartheta_{0}^{3}\right)^{-1}\left[105-15 \Delta_{0} f_{1}\left(\vartheta_{0}\right)+6 \Delta_{0}^{2} f_{2}\left(\vartheta_{0}\right)\right. \\
& \left.+2 \Delta_{0}^{3} f_{3}\left(\vartheta_{0}\right)\right] \tag{4.18}\\
D_{4}^{(0)}\left(\vartheta_{0}\right)= & \left(8 \vartheta_{0}^{4}\right)^{-1}\left[10395-1260 \Delta_{0} f_{1}\left(\vartheta_{0}\right)+420 \Delta_{0}^{2} f_{2}\left(\vartheta_{0}\right)\right. \\
& \left.+120 \Delta_{0}^{3} f_{3}\left(\vartheta_{0}\right)+8 \Delta_{0}^{4} f_{4}\left(\vartheta_{0}\right)\right] \tag{4.19}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta_{0} \equiv \vartheta_{0} / \sinh \vartheta_{0} \tag{4.20}
\end{equation*}
$$

This analysis also yields the additional result

$$
\begin{equation*}
C_{n}=-1 / n \tag{4.21}
\end{equation*}
$$

A uniform asymptotic expansion for $L_{n}(u)$ which is valid for $u>1$ can be derived by first applying the transformations

$$
\begin{align*}
& u=\frac{1}{2}\left(1+\cosh \vartheta_{1}\right) \tag{4.22}\\
& w=\left[\left(\sinh \vartheta_{1}\right) / \vartheta_{1}\right]^{1 / 2} W \tag{4.23}
\end{align*}
$$

to (4.5). This procedure leads to the differential equation

$$
\begin{equation*}
\frac{d^{2} W}{d \vartheta_{1}^{2}}=\frac{1}{\vartheta_{1}} \frac{d W}{d \vartheta_{1}}+\left[n^{2}-\frac{1}{\vartheta_{1}^{2}}+\bar{g}\left(\vartheta_{1}\right)\right] W \tag{4.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{g}\left(\vartheta_{1}\right)=\frac{1}{4}\left[\vartheta_{1}^{-2}+\operatorname{csch}^{2} \vartheta_{1}\left(1-2 \cosh \vartheta_{1}\right)\right] \tag{4.25}
\end{equation*}
$$

and $\vartheta_{1}>0$. The function $\bar{g}\left(\vartheta_{1}\right)$ is analytic at $\vartheta_{1}=0$ provided that we define $\bar{g}(0) \equiv-1 / 6$. We now apply to (4.24) the theorem D proved by Olver. ${ }^{(22)}$ This procedure yields the uniform asymptotic expansion

$$
\begin{align*}
L_{n}(u) \sim & \bar{C}_{n}\left[\left(\vartheta_{1} / 2\right) \operatorname{coth}\left(\vartheta_{1} / 2\right)\right]^{1 / 2}\left[I_{0}\left(n \vartheta_{1}\right) \sum_{s=0}^{\infty} D_{2 s}^{(1)}\left(\vartheta_{1}\right)(8 n)^{-2 s}\right. \\
& \left.+I_{1}\left(n \vartheta_{1}\right) \sum_{s=0}^{\infty} D_{2 s+1}^{(1)}\left(\vartheta_{1}\right)(8 n)^{-2 s-1}\right] \tag{4.26}
\end{align*}
$$

as $n \rightarrow \infty$ with $\vartheta_{1}>0$ and $u>1$, where \bar{C}_{n} only depends on the integer n and the coefficient $D_{0}^{(1)}\left(\vartheta_{1}\right) \equiv 1$.

The coefficients $D_{m}^{(1)}\left(\vartheta_{1}\right)(m=1,2, \ldots)$ and \bar{C}_{n} may be determined by substituting (4.13) in (4.26). If the resulting expansion is compared with the Darboux expansion (3.28), we find that

$$
\begin{align*}
\bar{C}_{n}= & (-1)^{n-1} / n \tag{4.27}\\
D_{0}^{(1)}\left(\vartheta_{1}\right)= & 1 \tag{4.28}\\
D_{1}^{(1)}\left(\vartheta_{1}\right)= & \vartheta_{1}^{-1}\left[-1+\Delta_{1} g_{1}\left(\vartheta_{1}\right)\right] \tag{4.29}\\
D_{2}^{(1)}\left(\vartheta_{1}\right)= & \left(2 \vartheta_{1}^{2}\right)^{-1}\left[-15+6 A_{1} g_{1}\left(\vartheta_{1}\right)+2 A_{1}^{2} g_{2}\left(\vartheta_{1}\right)\right] \tag{4.30}\\
D_{3}^{(1)}\left(\vartheta_{1}\right)= & \left(2 \vartheta_{1}^{3}\right)^{-1}\left[-75+9 \Delta_{1} g_{1}\left(\vartheta_{1}\right)-2 \Delta_{1}^{2} g_{2}\left(\vartheta_{1}\right)\right. \\
& \left.+2 \Delta_{1}^{3} g_{3}\left(\vartheta_{1}\right)\right] \tag{4.31}\\
D_{4}^{(1)}\left(\vartheta_{1}\right)= & \left(8 \vartheta_{1}^{4}\right)^{-1}\left[-4725+420 A_{1} g_{1}\left(\vartheta_{1}\right)-60 \Delta_{1}^{2} g_{2}\left(\vartheta_{1}\right)\right. \\
& \left.+24 \Delta_{1}^{3} g_{3}\left(\vartheta_{1}\right)+8 \Delta_{1}^{4} g_{4}\left(\vartheta_{1}\right)\right] \tag{4.32}
\end{align*}
$$

where

$$
\begin{equation*}
A_{1} \equiv \vartheta_{1} / \sinh \vartheta_{1} \tag{4.33}
\end{equation*}
$$

It should be noted that the coefficients $D_{m}^{(k)}\left(\vartheta_{k}\right)(k=0,1 ; m=1,2, \ldots)$ in the uniform expansions (4.10) and (4.26) are all well-behaved functions of ϑ_{k} in the limit $\vartheta_{k} \rightarrow 0$, (more precisely, the coefficients have removable singularities at $\vartheta_{k}=0$).

It has been shown by Olver ${ }^{(22)}$ that the basic asymptotic expansion (4.10) can also be written in the alternative form

$$
\begin{align*}
L_{n}(u) \sim & -(1 / n)\left[\left(\vartheta_{0} / 2\right) \tanh \left(\vartheta_{0} / 2\right)\right]^{1 / 2}\left[1+\sum_{s=1}^{\infty} A_{2 s}^{(0)}\left(\vartheta_{0}\right)(8 n)^{-2 s}\right] \\
& \times I_{1}\left[n \vartheta_{0}+n \vartheta_{0} \sum_{s=1}^{\infty} B_{2 s}^{(0)}\left(\vartheta_{0}\right)(8 n)^{-2 s}\right] \tag{4.34}
\end{align*}
$$

as $n \rightarrow \infty$, with $\vartheta_{0}>0$ and $u<0$. The coefficients $A_{2 s}^{(0)}\left(\vartheta_{0}\right)$ and $B_{2 s}^{(0)}\left(\vartheta_{0}\right)$ may be related to the coefficients $D_{m}^{(0)}\left(\vartheta_{0}\right)(m=1,2, \ldots)$ in (4.10) by expanding the Bessel function in (4.34) as a Taylor series. Standard recurrence relations are then used to express the derivatives $I_{1}^{(r)}\left(n \vartheta_{0}\right)$ in terms of $I_{1}\left(n \vartheta_{0}\right)$ and $I_{2}\left(n \vartheta_{0}\right)$. The final results are

$$
\begin{align*}
B_{2}^{(0)}\left(\vartheta_{0}\right)= & 8 \vartheta_{0}^{-1} D_{1}^{(0)}\left(\vartheta_{0}\right) \tag{4.35}\\
A_{2}^{(0)}\left(\vartheta_{0}\right)= & D_{2}^{(0)}\left(\vartheta_{0}\right)-\frac{1}{2}\left[D_{1}^{(0)}\left(\vartheta_{0}\right)\right]^{2}-8 \vartheta_{0}^{-1} D_{1}^{(0)}\left(\vartheta_{0}\right) \tag{4.36}\\
B_{4}^{(0)}\left(\vartheta_{0}\right)= & 8 \vartheta_{0}^{-1} D_{3}^{(0)}\left(\vartheta_{0}\right)-8 \vartheta_{0}^{-1} D_{1}^{(0)}\left(\vartheta_{0}\right) D_{2}^{(0)}\left(\vartheta_{0}\right) \\
& +\frac{8}{3} \vartheta_{0}^{-1}\left[D_{1}^{(0)}\left(\vartheta_{0}\right)\right]^{3}+96 \vartheta_{0}^{-2}\left[D_{1}^{(0)}\left(\vartheta_{0}\right)\right]^{2} \tag{4.37}
\end{align*}
$$

The application of similar methods to (4.26) yields the further asymptotic representation

$$
\begin{align*}
L_{n}(u) \sim & (-1)^{n-1} n^{-1}\left[\left(\vartheta_{1} / 2\right) \operatorname{coth}\left(\vartheta_{1} / 2\right)\right]^{1 / 2}\left[1+\sum_{s=1}^{\infty} A_{2 s}^{(1)}\left(\vartheta_{1}\right)(8 n)^{-2 s}\right] \\
& \times I_{0}\left[n \vartheta_{1}+n \vartheta_{1} \sum_{s=1}^{\infty} B_{2 s}^{(1)}\left(\vartheta_{1}\right)(8 n)^{-2 s}\right] \tag{4.38}
\end{align*}
$$

as $n \rightarrow \infty$, with $\vartheta_{1}>0$ and $u>1$. The first few coefficients in this expansion are given by

$$
\begin{align*}
B_{2}^{(1)}\left(\vartheta_{1}\right)= & 8 \vartheta_{1}^{-1} D_{1}^{(1)}\left(\vartheta_{1}\right) \tag{4.39}\\
A_{2}^{(1)}\left(\vartheta_{1}\right)= & D_{2}^{(1)}\left(\vartheta_{1}\right)-\frac{1}{2}\left[D_{1}^{(1)}\left(\vartheta_{1}\right)\right]^{2} \tag{4.40}\\
B_{4}^{(1)}\left(\vartheta_{1}\right)= & 8 \vartheta_{1}^{-1} D_{3}^{(1)}\left(\vartheta_{1}\right)-8 \vartheta_{1}^{-1} D_{1}^{(1)}\left(\vartheta_{1}\right) D_{2}^{(1)}\left(\vartheta_{1}\right) \\
& +\frac{8}{3} \vartheta_{1}^{-1}\left[D_{1}^{(1)}\left(\vartheta_{1}\right)\right]^{3}+32 \vartheta_{1}^{-2}\left[D_{1}^{(1)}\left(\vartheta_{1}\right)\right]^{2} \tag{4.41}
\end{align*}
$$

We shall find in Section 6 that the results (4.34) and (4.38) are particularly useful for analyzing the asymptotic properties of the zeros of $L_{n}(u)$.

5. ASYMPTOTIC BEHAVIOR OF $L_{n}(u)$ FOR $0<u<1$

The asymptotic properties of $L_{n}(u)$ in the physically significant interval $(0,1)$ can now be investigated by applying the transformation $\vartheta_{0}=i \theta_{0}$ $\left(0<\theta_{0}<\pi\right)$ to the basic result (4.10). We find that

$$
\begin{align*}
L_{n}(u) \sim & n^{-1}\left[\left(\theta_{0} / 2\right) \tan \left(\theta_{0} / 2\right)\right]^{1 / 2}\left[J_{1}\left(n \theta_{0}\right) \sum_{s=0}^{\infty} E_{2 s}^{(0)}\left(\theta_{0}\right)(8 n)^{-2 s}\right. \\
& \left.+J_{2}\left(n \theta_{0}\right) \sum_{s=0}^{\infty} E_{2 s+1}^{(0)}\left(\theta_{0}\right)(8 n)^{-2 s-1}\right] \tag{5.1}
\end{align*}
$$

as $n \rightarrow \infty$, where

$$
\begin{align*}
\theta_{0} & =\arccos (1-2 u) \quad(0<u<1) \tag{5.2}\\
E_{2 s}^{(0)}\left(\theta_{0}\right) & \equiv D_{2 s}^{(0)}\left(i \theta_{0}\right) \tag{5.3}\\
E_{2 s+1}^{(0)}\left(\theta_{0}\right) & \equiv i D_{2 s+1}^{(0)}\left(i \theta_{0}\right) \tag{5.4}
\end{align*}
$$

and $J_{v}(z)$ denotes a Bessel function of order v. The first few coefficients $E_{m}^{(0)}\left(\theta_{0}\right)(m=0,1,2, \ldots)$ are given by the explicit formulas

$$
\begin{align*}
E_{0}^{(0)}\left(\theta_{0}\right)= & 1 \tag{5.5}\\
E_{1}^{(0)}\left(\theta_{0}\right)= & \theta_{0}^{-1}\left[3-\delta_{0}\left(2+\cos \theta_{0}\right)\right] \tag{5.6}\\
E_{2}^{(0)}\left(\theta_{0}\right)= & -\left(2 \theta_{0}^{2}\right)^{-1}\left[105-30 \delta_{0}\left(2+\cos \theta_{0}\right)\right. \\
& \left.-\delta_{0}^{2}\left(4+12 \cos \theta_{0}-\cos ^{2} \theta_{0}\right)\right] \tag{5.7}\\
E_{3}^{(0)}\left(\theta_{0}\right)= & -\left(2 \theta_{0}^{3}\right)^{-1}\left[105+15 \delta_{0}\left(2+\cos \theta_{0}\right)\right. \\
& -3 \delta_{0}^{2}\left(4+12 \cos \theta_{0}-\cos ^{2} \theta_{0}\right) \\
& \left.-5 \delta_{0}^{3}\left(8+4 \cos \theta_{0}+10 \cos ^{2} \theta_{0}-\cos ^{3} \theta_{0}\right)\right] \tag{5.8}\\
E_{4}^{(0)}\left(\theta_{0}\right)= & 3\left(8 \theta_{0}^{4}\right)^{-1}\left[3465+420 \delta_{0}\left(2+\cos \theta_{0}\right)\right. \\
& -70 \delta_{0}^{2}\left(4+12 \cos \theta_{0}-\cos ^{2} \theta_{0}\right) \\
& -100 \delta_{0}^{3}\left(8+4 \cos \theta_{0}+10 \cos ^{2} \theta_{0}-\cos ^{3} \theta_{0}\right) \\
& -7 \delta_{0}^{4}\left(16+160 \cos \theta_{0}+8 \cos ^{2} \theta_{0}\right. \\
& \left.\left.+40 \cos ^{3} \theta_{0}+\cos \theta_{0}\right)\right] \tag{5.9}
\end{align*}
$$

where

$$
\begin{equation*}
\delta_{0} \equiv \theta_{0} / \sin \theta_{0} \tag{5.10}
\end{equation*}
$$

It is evident that (5.1) provides one with a uniform expansion for $L_{n}(u)$ which is particularly useful in the neighborhood of the critical point $u=0$. In the limit $u \rightarrow 1$ - the expansion (5.1) breaks down because of the presence of a transition point at $u=1$.

This difficulty can be overcome by applying the transformation $\vartheta_{1}=i \theta_{1}\left(0<\theta_{1}<\pi\right)$ to the result (4.26). Hence we obtain

$$
\begin{align*}
& L_{n}(u) \sim(-1)^{n-1} n^{-1}\left[\left(\theta_{1} / 2\right) \cot \left(\theta_{1} / 2\right)\right]^{1 / 2}\left[J_{0}\left(n \theta_{1}\right) \sum_{s=0}^{\infty} E_{2 s}^{(1)}\left(\theta_{1}\right)(8 n)^{-2 s}\right. \\
&\left.+J_{1}\left(n \theta_{1}\right) \sum_{s=0}^{\infty} E_{2 s+1}^{(1)}\left(\theta_{1}\right)(8 n)^{-2 s-1}\right] \tag{5.11}
\end{align*}
$$

as $n \rightarrow \infty$, where

$$
\begin{align*}
\theta_{1} & =\arccos (2 u-1) \quad(0<u<1) \tag{5.12}\\
E_{2 s}^{(1)}\left(\theta_{1}\right) & \equiv D_{2 s}^{(1)}\left(i \theta_{1}\right) \tag{5.13}\\
E_{2 s+1}^{(1)}\left(\theta_{1}\right) & \equiv i D_{2 s+1}^{(1)}\left(i \theta_{1}\right) \tag{5.14}
\end{align*}
$$

The first few coefficients $E_{m}^{(1)}\left(\theta_{1}\right)(m=0,1,2, \ldots)$ are

$$
\begin{align*}
E_{0}^{(1)}\left(\theta_{1}\right)= & 1 \tag{5.15}\\
E_{1}^{(1)}\left(\theta_{1}\right)= & -\theta_{1}^{-1}\left[1-\delta_{1}\left(2-\cos \theta_{1}\right)\right] \tag{5.16}\\
E_{2}^{(1)}\left(\theta_{1}\right)= & \left(2 \theta_{1}^{2}\right)^{-1}\left[15-6 \delta_{1}\left(2-\cos \theta_{1}\right)\right. \\
& \left.+\delta_{1}^{2}\left(4-12 \cos \theta_{1}-\cos ^{2} \theta_{1}\right)\right] \tag{5.17}\\
E_{3}^{(1)}\left(\theta_{1}\right)= & \left(2 \theta_{1}^{3}\right)^{-1}\left[75-9 \delta_{1}\left(2-\cos \theta_{1}\right)\right. \\
& -\delta_{1}^{2}\left(4-12 \cos \theta_{1}-\cos ^{2} \theta_{1}\right) \\
& \left.-5 \delta_{1}^{3}\left(8-4 \cos \theta_{1}+10 \cos ^{2} \theta_{1}+\cos ^{3} \theta_{1}\right)\right] \tag{5.18}\\
E_{4}^{(1)}\left(\theta_{1}\right)= & -3\left(8 \theta_{1}^{4}\right)^{-1}\left[1575-140 \delta_{1}\left(2-\cos \theta_{1}\right)\right. \\
& -10 \delta_{1}^{2}\left(4-12 \cos \theta_{1}-\cos ^{2} \theta_{1}\right) \\
& -20 \delta_{1}^{3}\left(8-4 \cos \theta_{1}+10 \cos ^{2} \theta_{1}+\cos ^{3} \theta_{1}\right) \\
& +7 \delta_{1}^{4}\left(16-160 \cos \theta_{1}+8 \cos ^{2} \theta_{1}\right. \\
& \left.\left.-40 \cos ^{3} \theta_{1}+\cos \theta_{1}^{4}\right)\right] \tag{5.19}
\end{align*}
$$

where

$$
\begin{equation*}
\delta_{1} \equiv \theta_{1} / \sin \theta_{1} \tag{5.20}
\end{equation*}
$$

Table I. Comparison of the Exact Values of $L_{n}\left(\frac{1}{2}\right),(n=2,3, \ldots, 15)$ with the Corresponding Asymptotic Values ${ }^{a}$

n	Exact $L_{n}(1 / 2)$	$e_{0}(n)$	$e_{1}(n)$
2	$1 / 8$	7.4×10^{-5}	4.0×10^{-5}
3	$-1 / 12$	8.6×10^{-7}	1.2×10^{-5}
4	$-3 / 64$	-9.2×10^{-7}	-9.2×10^{-7}
5	$3 / 80$	-8.4×10^{-8}	-4.2×10^{-7}
6	$5 / 192$	6.5×10^{-8}	8.1×10^{-8}
7	$-5 / 224$	1.2×10^{-8}	4.7×10^{-8}
8	$-35 / 2048$	-9.8×10^{-9}	-1.4×10^{-8}
9	$35 / 2304$	-2.7×10^{-9}	-9.0×10^{-9}
10	$63 / 5120$	2.2×10^{-9}	3.4×10^{-9}
11	$-63 / 5632$	8.0×10^{-10}	2.4×10^{-9}
12	$-77 / 8192$	-6.7×10^{-10}	-1.1×10^{-9}
13	$231 / 26624$	-2.8×10^{-10}	-8.0×10^{-10}
14	$429 / 57334$	2.4×10^{-10}	4.0×10^{-10}
15	$-143 / 20480$	1.2×10^{-10}	3.1×10^{-10}

${ }^{a}$ The quantities $e_{0}(n)$ and $e_{1}(n)$ are the differences between the asymptotic values of $L_{n}(1 / 2)$ as determined from the formulas (5.1) and (5.11), respectively, and the exact value of $L_{n}(1 / 2)$.

The coefficients $E_{m}^{(k)}\left(\theta_{k}\right)(k=0,1 ; m=1,2, \ldots)$ in the expansions (5.1) and (5.11) are all well-behaved functions of θ_{k} in the limit $\theta_{k} \rightarrow 0$ (more precisely, the coefficients have removable singularities at $\theta_{k}=0$).

In order to provide a check on the analysis in this section the uniform expansions (5.1) and (5.11) have been used to calculate $L_{n}(u)$ for $2 \leqslant n \leqslant 15$ with $u=\frac{1}{2}$. The results are given in Table I. We see that the asymptotic approximations for $L_{n}\left(\frac{1}{2}\right)$ are in excellent agreement with the exact value. Finally we note that nonuniform expansions for $L_{n}(u)$ which are valid in the oscillatory region $0<u<1$ can be established by substituting the standard asymptotic expansion for $J_{v}(z)$ in (5.1) and (5.11).

6. ASYMPTOTIC PROPERTIES OF ZEROS OF $L_{n}(u)$

The polynomial $u^{-1} L_{n}(u)$ has $(n-1)$ simple zeros $u_{n}(v)$ $(v=1,2, \ldots, n-1)$, which are all located in the interval $0<u<1$. These zeros will be enumerated in ascending order, with

$$
\begin{equation*}
0<u_{n}(1)<u_{n}(2)<\cdots<u_{n}(n-1)<1 \tag{6.1}
\end{equation*}
$$

We shall investigate the asymptotic properties of $u_{n}(v)$ by first applying the transformation $\vartheta_{0}=i \theta_{0}\left(0<\theta_{0}<\pi\right)$ to (4.34). This procedure yields

$$
\begin{align*}
L_{n}(u) \sim & (1 / n)\left[\left(\theta_{0} / 2\right) \tan \left(\theta_{0} / 2\right)\right]^{1 / 2}\left[1+\sum_{s=1}^{\infty} G_{2 s}^{(0)}\left(\theta_{0}\right)(8 n)^{-2 s}\right] \\
& \times J_{1}\left[n \theta_{0}+n \theta_{0} \sum_{s=1}^{\infty} H_{2 s}^{(0)}\left(\theta_{0}\right)(8 n)^{-2 s}\right] \tag{6.2}
\end{align*}
$$

as $n \rightarrow \infty$, where

$$
\begin{align*}
H_{2}^{(0)}\left(\theta_{0}\right)= & -8 \theta_{0}^{-1} E_{1}^{(0)}\left(\theta_{0}\right) \tag{6.3}\\
G_{2}^{(0)}\left(\theta_{0}\right)= & E_{2}^{(0)}\left(\theta_{0}\right)+\frac{1}{2}\left[E_{1}^{(0)}\left(\theta_{0}\right)\right]^{2}+8 \theta_{0}^{-1} E_{1}^{(0)}\left(\theta_{0}\right) \tag{6.4}\\
H_{4}^{(0)}\left(\theta_{0}\right)= & -8 \theta_{0}^{-1} E_{3}^{(0)}\left(\theta_{0}\right)+8 \theta_{0}^{-1} E_{1}^{(0)}\left(\theta_{0}\right) E_{2}^{(0)}\left(\theta_{0}\right) \\
& +\frac{8}{3} \theta_{0}^{-1}\left[E_{1}^{(0)}\left(\theta_{0}\right)\right]^{3}+96 \theta_{0}^{-2}\left[E_{1}^{(0)}\left(\theta_{0}\right)\right]^{2} \tag{6.5}
\end{align*}
$$

and the coefficients $E_{m}^{(0)}\left(\theta_{0}\right)(m=1,2,3)$ are defined in Section 5. The parameter θ_{0} is determined by the relation (5.2) with $0<u<1$.

We see from (6.2) that $L_{n}(u)$ will be asymptotically equal to zero when

$$
\begin{equation*}
j_{1, v}=n \theta_{0, v}\left[1+\sum_{s=1}^{\infty} H_{2 s}^{(0)}\left(\theta_{0, v}\right)(8 n)^{-2 s}\right] \tag{6.6}
\end{equation*}
$$

where $v=1,2, \ldots, n-1$ and $j_{1, v}$ is the v th zero of the Bessel function $J_{1}(z)$. If the implicit transcendental Equation (6.6) is solved for the quantity $\theta_{0, v}$, then the v th zero of $L_{n}(u)$ is given by

$$
\begin{equation*}
u_{n}(v) \sim \frac{1}{2}\left(1-\cos \theta_{0, v}\right) \tag{6.7}
\end{equation*}
$$

where $v=1,2, \ldots, n-1$. This procedure has been carried out for $n=20$ by applying a direct iterative method to Eq. (6.6) with the coefficients $H_{2}^{(0)}$ and $H_{4}^{(0)}$ and an initial solution $\theta_{0, v} \simeq j_{1, v} / n$. The resulting asymptotic values for $u_{20}(v)(v=1,2, \ldots, 19)$ are compared with the corresponding exact values in Table II. We see that (6.6) gives a highly accurate representation of the zeros $u_{20}(v)(v=1,2, \ldots, 19)$, especially for small values of v. The turning point at $u=1$ is responsible for the steady increase in the error $\varepsilon_{0}(v)$ as v increases.

It is also possible to analyze the asymptotic properties of $u_{n}(v)$ by applying the transformation $\vartheta_{1}=i \theta_{1}\left(0<\theta_{1}<\pi\right)$ to (4.38). In this manner we find that

$$
\begin{align*}
& L_{n}(u) \sim(-1)^{n-1} n^{-1}\left[\left(\theta_{1} / 2\right) \cot \left(\theta_{1} / 2\right)\right]^{1 / 2}\left[1+\sum_{s=1}^{\infty} G_{2 s}^{(1)}\left(\theta_{1}\right)(8 n)^{-2 s}\right] \\
& \times J_{0}\left[n \theta_{1}+n \theta_{1} \sum_{s=1}^{\infty} H_{2 s}^{(1)}\left(\theta_{1}\right)(8 n)^{-2 s}\right] \tag{6.8}
\end{align*}
$$

Table II. Comparison of the Exact Values of the Zeros $u_{20}(v)(v=1,2, \ldots, 19)$ with the Corresponding Asymptotic Values ${ }^{\text {a }}$

v	Exact $u_{20}(v)$	$\varepsilon_{0}(v)$	$\varepsilon_{1}(v)$
1	0.009148194729044	1.1×10^{-14}	1.6×10^{-6}
2	0.030447362919779	1.3×10^{-13}	1.7×10^{-7}
3	0.063304151925635	5.8×10^{-13}	3.9×10^{-8}
4	0.106906865018155	1.8×10^{-12}	1.3×10^{-8}
5	0.160181384291289	4.6×10^{-12}	5.5×10^{-9}
6	0.221815777023238	1.0×10^{-11}	2.6×10^{-9}
7	0.290292348346098	2.0×10^{-11}	1.4×10^{-9}
8	0.363924955120729	3.9×10^{-11}	7.8×10^{-10}
9	0.440900507350968	7.3×10^{-11}	4.6×10^{-10}
10	0.519323606421448	1.3×10^{-10}	2.8×10^{-10}
11	0.597263213834923	2.5×10^{-10}	1.8×10^{-10}
12	0.672800199236188	5.0×10^{-10}	1.1×10^{-10}
13	0.744074596517897	9.1×10^{-10}	7.0×10^{-11}
14	0.809331405095237	1.9×10^{-9}	4.4×10^{-11}
15	0.866963811441901	4.3×10^{-9}	2.7×10^{-11}
16	0.915552777215790	1.2×10^{-8}	1.5×10^{-11}
17	0.953902066951569	4.0×10^{-8}	7.5×10^{-12}
18	0.981068162968412	2.2×10^{-7}	2.9×10^{-12}
19	0.996388357181443	3.9×10^{-6}	5.4×10^{-13}

${ }^{a}$ The quantities $\varepsilon_{0}(v)$ and $\varepsilon_{1}(v)$ are the differences between the asymptotic values of $u_{20}(v)$ as determined from the formulas (6.6) and (6.13), respectively, and the exact value of $u_{20}(v)$.
as $n \rightarrow \infty$, where

$$
\begin{align*}
H_{2}^{(1)}\left(\theta_{1}\right)= & -8 \theta_{1}^{-1} E_{1}^{(1)}\left(\theta_{1}\right) \tag{6.9}\\
G_{2}^{(1)}\left(\theta_{1}\right)= & E_{2}^{(1)}\left(\theta_{1}\right)+\frac{1}{2}\left[E_{1}^{(1)}\left(\theta_{1}\right)\right]^{2} \tag{6.10}\\
H_{4}^{(1)}\left(\theta_{1}\right)= & -8 \theta_{1}^{-1} E_{3}^{(1)}\left(\theta_{1}\right)+8 \theta_{1}^{-1} E_{1}^{(1)}\left(\theta_{1}\right) E_{2}^{(1)}\left(\theta_{1}\right) \\
& +\frac{8}{3} \theta_{1}^{-1}\left[E_{1}^{(1)}\left(\theta_{1}\right)\right]^{3}+32 \theta_{1}^{-2}\left[E_{1}^{(1)}\left(\theta_{1}\right)\right]^{2} \tag{6.11}
\end{align*}
$$

and the coefficients $E_{m}^{(1)}\left(\theta_{1}\right)(m=1,2,3)$ are defined in Section 5. The parameter θ_{1} is determined by the relation (5.12) with $0<u<1$. It follows from (6.8) that the zeros of $L_{n}(u)$ have the alternative asymptotic representation

$$
\begin{equation*}
u_{n}(n-v) \sim \frac{1}{2}\left(1+\cos \theta_{1, v}\right) \tag{6.12}
\end{equation*}
$$

where $v=1,2, \ldots, n-1, \theta_{1, v}$ satisfies the implicit transcendental equation

$$
\begin{equation*}
j_{0, v}=n \theta_{1, v}\left[1+\sum_{s=1}^{\infty} H_{2 s}^{(1)}\left(\theta_{1, v}\right)(8 n)^{-2 s}\right] \tag{6.13}
\end{equation*}
$$

and $j_{0, v}$ is the v th zero of the Bessel function $J_{0}(z)$. Equation (6.13) has been solved numerically for $n=20$ with the coefficients $H_{2}^{(1)}$ and $H_{4}^{(1)}$, and the resulting asymptotic values for $u_{20}(20-v)(v=1,2, \ldots, 19)$ are compared with the corresponding exact values in Table II. It is clear that (6.13) yields very accurate approximations for the zeros which are close to the turning point $u=1$.

When $n \rightarrow \infty$ with v fixed the solution $\theta_{0, v}$ of (6.6) will tend to zero as $j_{1, v} / n$. For this case we can use the Taylor series

$$
\begin{align*}
& H_{2}^{(0)}(\theta)=\frac{2}{15} \theta^{2}+\frac{1}{63} \theta^{4}+O\left(\theta^{6}\right) \tag{6.14}\\
& H_{4}^{(0)}(\theta)=-\frac{256}{63} \theta^{2}-\frac{26}{25} \theta^{4}+O\left(\theta^{6}\right) \tag{6.15}
\end{align*}
$$

to derive an asymptotic expansion for $\theta_{0, v}$ in powers of $1 / n$. The final result is

$$
\begin{align*}
\theta_{0, v}= & \left(j_{1, v} / n\right)\left[1-\left(j_{1, v}^{2} / 480\right) n^{-4}\right. \\
& \left.+\left(j_{1, v}^{2} / 4032\right)\left(4-j_{1, v}^{2}\right) n^{-6}+\cdots\right] \tag{6.16}
\end{align*}
$$

If we substitute (6.16) in (6.7), we find that

$$
\begin{align*}
u_{n}(v) \sim & \frac{1}{4}\left(j_{1, v} / n\right)^{2}\left[1-\left(j_{1, v}^{2} / 12\right) n^{-2}\right. \\
& +\left(j_{1, v}^{2} / 720\right)\left(-3+2 j_{1, v}^{2}\right) n^{-4} \\
& \left.+\left(j_{1, v}^{2} / 20160\right)\left(40+4 j_{1, v}^{2}-j_{1, v}^{4}\right) n^{-6}+\cdots\right] \tag{6.17}
\end{align*}
$$

as $n \rightarrow \infty$ with v fixed. This expansion is consistent with the numerical work of Majumdar ${ }^{(30)}$ and the scaling theory arguments of Gaunt ${ }^{(28)}$ for general Ising model systems, provided that we take $u_{c} \equiv 0$ and the critical exponent $\Delta=\frac{1}{2}$.

In a similar manner we can use the Taylor series

$$
\begin{align*}
& H_{2}^{(1)}(\theta)=-\frac{16}{3}-\frac{22}{45} \theta^{2}+O\left(\theta^{4}\right) \tag{6.18}\\
& H_{4}^{(1)}(\theta)=\frac{2176}{45}+\frac{40736}{2835} \theta^{2}+O\left(\theta^{4}\right) \tag{6.19}
\end{align*}
$$

to obtain the following expansion for the solution $\theta_{1, v}$ of the transcendental equation (6.13):

$$
\begin{align*}
\theta_{1, v}= & \left(j_{0, v} / n\right)\left[1+(1 / 12) n^{-2}\right. \\
& \left.+(1 / 1440)\left(11 j_{0, v}^{2}-7\right) n^{-4}+\cdots\right] \tag{6.20}
\end{align*}
$$

The substitution of (6.20) in (6.12) yields the further asymptotic representation

$$
\begin{gather*}
u_{n}(n-v) \sim 1-\left(j_{0, v}^{2} / 4\right) n^{-2}+\left(j_{0, v}^{2} / 48\right)\left(-2+j_{0, v}^{2}\right) n^{-4} \\
+\left(j_{0, v}^{2} / 2880\right)\left(2+9 j_{0, v}^{2}-2 j_{0, v}^{4}\right) n^{-6}+\cdots \tag{6.21}
\end{gather*}
$$

as $n \rightarrow \infty$ with v fixed.
Finally, we define $M_{n}(a, b)$ to be the number of zeros $u_{n}(v)$ ($v=1,2, \ldots, n-1$) which lie in the interval (a, b), where $0 \leqslant a<b \leqslant 1$. From the asymptotic theory of orthogonal polynomials ${ }^{(31)}$ it can be shown that

$$
\begin{equation*}
M_{n}(a, b) \sim \int_{a}^{b} \rho(u) d u \tag{6.22}
\end{equation*}
$$

as $n \rightarrow \infty$, where

$$
\begin{equation*}
\rho(u)=(n-1) \pi^{-1}[u(1-u)]^{-1 / 2} \tag{6.23}
\end{equation*}
$$

7. ASYMPTOTIC BEHAVIOR OF $L_{n}(u)$ AS $u \rightarrow 0+$ AND $u \rightarrow 1-$

The behavior of $L_{n}(u)$ as $n \rightarrow \infty$ and $u \rightarrow 0+$ may be determined by applying the Taylor series

$$
\begin{align*}
& E_{1}^{(0)}(\theta)=-\frac{1}{60} \theta^{3}-\frac{1}{504} \theta^{5}+O\left(\theta^{7}\right) \tag{7.1}\\
& E_{2}^{(0)}(\theta)=-\frac{1}{63} \theta^{4}-\frac{1}{288} \theta^{6}+O\left(\theta^{8}\right) \tag{7.2}\\
& E_{3}^{(0)}(\theta)=\frac{32}{63} \theta^{3}+\frac{2}{15} \theta^{5}+O\left(\theta^{7}\right) \tag{7.3}
\end{align*}
$$

and (5.2) to the basic result (5.1). In this manner we eventually find that

$$
\begin{equation*}
L_{n}(u) / u \sim \sum_{m=0}^{\infty} \psi_{m}^{(0)}\left(\xi_{0}\right)[(2 m)!]^{-1} n^{-2 m} \tag{7.4}
\end{equation*}
$$

as $n \rightarrow \infty$ and $u \rightarrow 0+$, where

$$
\begin{align*}
\psi_{0}^{(0)}\left(\xi_{0}\right)= & \left(2 / \xi_{0}\right) J_{1}\left(\xi_{0}\right) \tag{7.5}\\
\psi_{1}^{(0)}\left(\xi_{0}\right)= & \left(\xi_{0} / 6\right)\left[3 J_{1}\left(\xi_{0}\right)-\xi_{0} J_{2}\left(\xi_{0}\right)\right] \tag{7.6}\\
\psi_{2}^{(0)}\left(\xi_{0}\right)= & \left(\xi_{0}^{2} / 120\right)\left[\xi_{0}\left(123-5 \xi_{0}^{2}\right) J_{1}\left(\xi_{0}\right)\right. \\
& \left.-\left(12+42 \xi_{0}^{2}\right) J_{2}\left(\xi_{0}\right)\right] \tag{7.7}
\end{align*}
$$

and

$$
\begin{equation*}
\xi_{0}=2 n u^{1 / 2} \tag{7.8}
\end{equation*}
$$

It is also possible to derive a general formula for the scaling functions $\psi_{m}^{(0)}\left(\xi_{0}\right)$ ($m=0,1,2, \ldots$) by first using the hypergeometric representation (2.10) to write $L_{n}(u)$ in the form

$$
\begin{equation*}
L_{n}(u)=\frac{u}{n} \sum_{k=0}^{n-1} \frac{\Gamma(n+k+1)}{(2)_{k} \Gamma(n-k)} \frac{(-u)^{k}}{k!} \tag{7.9}
\end{equation*}
$$

If the asymptotic expansion ${ }^{(25)}$

$$
\begin{equation*}
\frac{\Gamma(n+k+1)}{\Gamma(n-k)} \sim n^{2 k+1} \sum_{m=0}^{\infty} \frac{(-2 k-1)_{2 m} B_{2 m}^{(2 k+2)}(k+1)}{(2 m)!n^{2 m}} \tag{7.10}
\end{equation*}
$$

as $n \rightarrow \infty$ is now substituted in (7.9), we obtain the closed-form expression

$$
\begin{equation*}
\psi_{m}^{(0)}\left(\xi_{0}\right)=\sum_{k=0}^{\infty} \frac{(-2 k-1)_{2 m} B_{2 m}^{(2 k+2)}(k+1)}{(k+1)!} \frac{\left(-\xi_{0}^{2} / 4\right)^{k}}{k!} \tag{7.11}
\end{equation*}
$$

where $B_{k}^{(a)}(x)$ denotes a generalized Bernoulli polynomial. It can be shown that (7.11) is consistent with the results (7.5)-(7.7).

In a similar manner the application of the Taylor series

$$
\begin{align*}
& E_{1}^{(1)}(\theta)=\frac{2}{3} \theta+\frac{11}{180} \theta^{3}+O\left(\theta^{5}\right) \tag{7.12}\\
& E_{2}^{(1)}(\theta)=\frac{4}{15} \theta^{2}+\frac{37}{630} \theta^{4}+O\left(\theta^{6}\right) \tag{7.13}\\
& E_{3}^{(1)}(\theta)=-\frac{64}{15} \theta-\frac{376}{315} \theta^{3}+O\left(\theta^{5}\right) \tag{7.14}
\end{align*}
$$

and (5.12) to (5.11) yields the asymptotic expansion

$$
\begin{equation*}
L_{n}(u) / u \sim(-1)^{n-1} n^{-1} \sum_{m=0}^{\infty} \psi_{m}^{(1)}\left(\xi_{1}\right)[(2 m)!]^{-1} n^{-2 m} \tag{7.15}
\end{equation*}
$$

as $n \rightarrow \infty$ and $u \rightarrow 1-$, where

$$
\begin{align*}
\psi_{0}^{(1)}\left(\xi_{1}\right)= & J_{0}\left(\xi_{1}\right) \tag{7.16}\\
\psi_{1}^{(1)}\left(\xi_{1}\right)= & \left(\xi_{1} / 12\right)\left[5 \xi_{1} J_{0}\left(\xi_{1}\right)+\left(2-\xi_{1}^{2}\right) J_{1}\left(\xi_{1}\right)\right] \tag{7.17}\\
\psi_{2}^{(1)}\left(\xi_{1}\right)= & \left(\xi_{1} / 240\right)\left[\left(24 \xi_{1}+291 \xi_{1}^{3}-5 \xi_{1}^{5}\right) J_{0}\left(\xi_{1}\right)\right. \\
& \left.+\left(-48+144 \xi_{1}^{2}-72 \xi_{1}^{4}\right) J_{1}\left(\xi_{1}\right)\right] \tag{7.18}
\end{align*}
$$

and

$$
\begin{equation*}
\xi_{1}=2 n(1-u)^{1 / 2} \tag{7.19}
\end{equation*}
$$

A general formula for $\psi_{m}^{(1)}\left(\xi_{1}\right)(m=0,1,2, \ldots)$ can be derived by applying the relation ${ }^{(27)}$

$$
\begin{equation*}
P_{n}^{(1,0)}(x)=(-1)^{n}{ }_{2} F_{1}\left(-n, n+2 ; 1 ; \frac{1}{2}+\frac{1}{2} x\right) \tag{7.20}
\end{equation*}
$$

to (2.8). In this manner we obtain

$$
\begin{equation*}
L_{n}(u)=\frac{(-1)^{n} u^{n}}{n^{2}} \sum_{k=0}^{n-1} \frac{\Gamma(n+k+1)}{(1)_{k} \Gamma(n-k)} \frac{[-(1-u)]^{k}}{k!} \tag{7.21}
\end{equation*}
$$

The substitution of the asymptotic expansion (7.10) in this result gives the required closed-form expression

$$
\begin{equation*}
\psi_{m}^{(1)}\left(\xi_{1}\right)=\sum_{k=0}^{\infty}(-2 k-1)_{2 m} B_{2 m}^{(2 k+2)}(k+1)\left(-\xi_{1}^{2} / 4\right)^{k} /(k!)^{2} \tag{7.22}
\end{equation*}
$$

where $B_{k}^{(a)}(x)$ denotes a generalized Bernoulli polynomial. It has been verified that (7.22) is consistent with the results (7.16)-(7.18).

8. CONCLUDING REMARKS

In this paper we have established uniform asymptotic representations for the high-field polynomials $L_{n}(u)$ of the one-dimer ional spin $\frac{1}{2}$ Ising model. These representations have been used to derive the following asymptotic expansions for the zeros $u_{n}(v)(v=1,2, \ldots, n-1)$:

$$
\begin{align*}
u_{n}(v) & \sim A_{0}(v) n^{-2}\left[1-\sum_{m=1}^{\infty} B_{m}(v) n^{-2 m}\right] \tag{8.1}\\
u_{n}(n-v) & \sim 1-\sum_{m=1}^{\infty} C_{m}(v) n^{-2 m} \tag{8.2}
\end{align*}
$$

as $n \rightarrow \infty$, with v fixed, where the coefficients $B_{m}(v)$ and $C_{m}(v)(m=1,2, \ldots)$ are polynomials in the Bessel function zeros $j_{1, v}$ and $j_{0, v}$, respectively.

For spin $\frac{1}{2}$, nearest neighbor Ising models on a d-dimensional lattice Ω_{d} with $d>1$ it appears from the numerical work of Majumdar ${ }^{(30)}$ and Gaunt ${ }^{(28)}$ that $L_{n}(u)$ still has exactly $n-1$ real zeros $u_{n}(v)(v=1,2, \ldots, n-1)$ which lie in the interval $u_{c}<u<1$. However, for $d>1$ there are additional zeros of $L_{n}(u)$ which lie either on the negative real u axis or in the complex u plane with $\operatorname{Im}(u) \neq 0$. (There is also a trivial multiple zero at $u=0$.) In these higher-dimensional models one can use critical point scaling theory to obtain the leading-order asymptotic formula ${ }^{(28)}$

$$
\begin{equation*}
u_{n}(v)-u_{c} \sim A_{0}\left(v, \Omega_{d}\right) n^{-1 / d} \tag{8.3}
\end{equation*}
$$

as $n \rightarrow \infty$ with v fixed, where the amplitude $A_{0}\left(v, \Omega_{d}\right)$ depends on the lattice Ω_{d} and Δ is a standard critical exponent which depends only on the dimensionality d of the lattice. It is clear that the formula (8.3) agrees to leading order with (8.1) provided that we take $u_{c} \equiv 0$ and $\Delta=\frac{1}{2}$.

Recently, D. S. Gaunt (private communication) has also shown that the asymptotic formula

$$
\begin{equation*}
u_{n}(n-v) \sim 1-C_{1}\left(v, \Omega_{d}\right) n^{-2} \tag{8.4}
\end{equation*}
$$

as $n \rightarrow \infty$ with v fixed is valid for all spin $\frac{1}{2}$ nearest neighbor Ising models with $d \geqslant 1$. From this result it is reasonable to expect that the general form of the expansion (8.2) will be applicable to other higher-dimensional Ising models. I hope to investigate this conjecture in a future publication.

ACKNOWLEDGMENTS

I am extremely grateful to Prof. D. S. Gaunt for several stimulating discussions and for the provision of his (as yet unpublished) result (8.4). I also thank A. L. J. Wells for his assistance and advice on the accurate numerical calculation of Bessel functions.

REFERENCES

1. C. Domb, in Phase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, New York, 1974), p. 357.
2. C. Domb, Adv. Phys. 9:149, 245 (1960).
3. T. D. Lee and C. N. Yang, Phys. Rev. 87:410 (1952).
4. M. F. Sykes, J. W. Essam, and D. S. Gaunt, J. Math. Phys. 6:283 (1965).
5. M. F. Sykes, D. S. Gaunt, J. W. Essam, and D. L. Hunter, J. Math. Phys. 14:1060 (1973).
6. M. F. Sykes, D. S. Gaunt, S. R. Mattingly, J. W. Essam and C. J. Elliott, J. Math. Phys, 14:1066 (1973).
7. M. F. Sykes, D. S. Gaunt, J. W. Essam, J. L. Martin, and S. R. Mattingly, J. Math. Phys. 14:1071 (1973).
8. M. F. Sykes, D. S. Gaunt, J. W. Essam, B. R. Heap, C. J. Elliott, and S. R. Mattingly, J. Phys. A: Math. Nucl. Gen. 6:1498 (1973).
9. J. W. Essam and M. E. Fisher, J. Chem. Phys. 38:802 (1963).
10. M. E. Fisher, Rep. Progr. Phys. 30:615 (1967).
11. M. E. Fisher, Physics 3:255 (1967).
12. D. S. Gaunt and G. A. Baker, Phys. Rev. B 1:1184 (1970).
13. J. S. Langer, Ann. Phys. 41:108 (1967).
14. L. Reatto, Phys. Lett. A 33:519 (1970).
15. D. Stauffer, C. S. Kiang, and G. H. Walker, J. Stat. Phys. $3: 325$ (1971).
16. L. Reatto and E. Rastelli, J. Phys. C: Solid State Phys. 5:2785 (1972).
17. C. Domb and A. J. Guttmann, J. Phys. C: Solid State Phys. 3:1652 (1970).
18. C. Domb, J. Phys. C: Solid State Phys. 6:39 (1973).
19. C. Domb, J. Phys. A: Math. Gen. 9:283 (1976).
20. M. G. Darboux, J. Math. $4: 5$ (1878).
21. F. W. J. Olver, Phil. Trans. R. Soc. Lond. A 247:307 (1954).
22. F. W. J. Olver, Phil. Trans. R. Soc. Lond. A 249:65 (1956).
23. J. D. Bessis, J. M. Drouffe, and P. Moussa, J. Phys. A:Math. Gen. 9:2105 (1976).
24. G. Szegö, Orthogonal Polynomials (American Mathematical Society, Providence, Rhode Island, 1939).
25. Y. L. Luke, The Special Functions and their Approximations, Vol. 1 (Academic Press, New York, 1969).
26. W. Magnus and F. Oberhettinger, Formeln und Sätze für die speziellen Funktionen der Mathematischen Physik (Springer-Verlag, Berlin, 1948), Chapter 5.
27. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. 2 (McGraw-Hill, New York, 1953).
28. D. S. Gaunt, J. Phys. A: Math. Gen. 11:1991 (1978).
29. J. C. Burkill, The Theory of Ordinary Differential Equations, 2nd ed. (Oliver and Boyd, Edinburgh, 1962).
30. C. K. Majumdar, Phys. Rev. B 10:2857 (1974).
31. W. Van Assche, Asymptotics for Orthogonal Polynomials (Springer-Verlag, Berlin, 1987).

[^0]: ${ }^{1}$ Wheatstone Physics Laboratory, King's College, Strand, London, England WC2R 2LS.

